Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Magnus G. Johnston and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mn}-\mathrm{O})=0.002 \AA$
R factor $=0.019$
$w R$ factor $=0.045$
Data-to-parameter ratio $=22.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Manganese tellurite, $\boldsymbol{\beta}$ - $\mathrm{MnTe}_{2} \mathrm{O}_{5}$

Hydrothermally prepared $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ is isostructural with $\mathrm{MgTe}_{2} \mathrm{O}_{5}$. It contains infinite layers of corner-sharing TeO_{3+1} groups propagating in the ac plane. Infinite chains of edgesharing MnO_{6} octahedra $\left[d_{\mathrm{av}}(\mathrm{Mn}-\mathrm{O})=2.186\right.$ (2) \AA] running along [001] link the Te / O layers into a continuous structure. Mn and one O atom have site symmetry 2. $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ complements the known denningite-type phase $\alpha-\mathrm{MnTe}_{2} \mathrm{O}_{5}$.

Comment

$\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ is isostructural with $\mathrm{MgTe}_{2} \mathrm{O}_{5}$ (Trömel, 1975). An indexed powder pattern for $\mathrm{MnTe}_{2} \mathrm{O}_{5}$ (which we now call the β modification of this stoichiometry), with a similar orthorhombic cell to that found here, was also given by Trömel, but no further structural details were elucidated.

Synthetic denningite-type $\mathrm{MnTe}_{2} \mathrm{O}_{5}$ (hereafter called α $\mathrm{MnTe}_{2} \mathrm{O}_{5}$) has a completely different structure (Miletich, 1993) containing unusual MnO_{8} groups, as well as very distorted MnO_{6} octahedra and TeO_{4} moieties. The formula of the α phase is sometimes written as $\mathrm{Mn}_{2}\left(\mathrm{Te}_{2} \mathrm{O}_{5}\right)_{2}$ to emphasise the different Mn coordinations and an extensive substitution chemistry is possible at both the eight- and six-coordinate metal sites (Walitzi, 1964; Miletich, 1993). $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ is slightly denser than $\alpha-\mathrm{MnTe}_{2} \mathrm{O}_{5}\left(\rho=5.198 \mathrm{Mg} \mathrm{m}^{-3}\right)$.

In $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$, the manganese cation (site symmetry 2) is coordinated by six O atoms in distorted octahedral geometry. The average $\mathrm{Mn}-\mathrm{O}$ separation of 2.186 (2) \AA is in good agreement with the ionic radius sum for high-spin $\mathrm{Mn}^{\mathrm{II}}$ and O^{2-} (2.19 \AA; Shannon, 1976). The bond valence sum (BVS) of 2.07, calculated by the Brown formalism (1996), is close to the

Figure 1
Fragment of β - $\mathrm{MnTe}_{2} \mathrm{O}_{5}$ (50% probability displacement ellipsoids), showing the atom connectivity and labelling scheme. The long Te $1 \cdots \mathrm{O}^{\text {vii }}$ contact is indicated by a dashed bond. Symmetry codes as in Table 1; additionally, (vii) $-x, 1-y, 1-z$; (viii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (ix) $-x, y, \frac{1}{2}-z$.

Received 5 June 2002
Accepted 10 June 2002 Online 14 June 2002

Figure 2
Slice of $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$, viewed down [010], showing part of an infinite corner-sharing tellurite sheet.
expected value of 2.00 . The trans $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ bond angles range from 154.94 (7) to $174.38(11)^{\circ}$, while the angular variance (Robinson et al., 1971) of the cis $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ angles has the large value of 119.5°.
$\mathrm{Te} 1(\mathrm{BVS}=4.01$, expected 4.00$)$ has three O -atom neighbours with $d(\mathrm{Te}-\mathrm{O})<2.00 \AA$ and a further O atom some $2.49 \AA$ distant. This so-called TeO_{3+1} coordination approximates to a distorted folded square (or a trigonal bipyramid with one of the equatorial vertices absent and a long axial bond). A similar Te coordination environment has been seen in $\mathrm{Co}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$ (Feger et al., 1999). If a fifth, much longer, Te1 \cdots O $1^{\text {vii }}[d=3.069$ (3) \AA; symmetry code: (vii) $-x, 1-y$, $1-z]$ interaction in $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ is also considered, the Te geometry approximates to a very distorted square-based pyramid. Such asymmetric coordinations are highly characteristic of $\mathrm{Te}^{\mathrm{IV}}$ and can be correlated with its stereochemically active lone pair of electrons (Brown, 1974).

Of the three O atoms, O1 (site symmetry 2) bridges two Te atoms. O 2 bonds to two Te and one Mn in very squashed pyramidal geometry [sum of $X-\mathrm{O}-X(X=\mathrm{Mn}, \mathrm{Te})$ bond angles $=353.5^{\circ}$] and O 3 bonds to two Mn and one Te in essentially planar geometry (sum of $X-\mathrm{O}-X$ bond angles $=$ 359.4°).

The overall structure of $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ consists of infinite corrugated sheets of corner-sharing TeO_{3+1} moieties propagating in the (010) plane. Connectivity between adjacent

Figure 3
Polyhedral diagram of $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$, viewed approximately normal to [001]. Colour key: MnO_{6} octahedra pink and TeO_{3+1} groups blue.
polyhedra is provided by the O 1 and O 2 species to result in an anionic layer of stoichiometry $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]^{2-}$. These layers contain six-ring (six polyhedral units) loops (Fig. 2). Each MnO_{6} group shares an edge via a pair of O3 species $[d(\mathrm{Mn} \cdots \mathrm{Mn})=$ 3.3457 (3) \AA] with two others, thus forming infinite chains running in the [001] direction. These Mn octahedral chains serve to fuse the Te layers, via edge and corner-sharing, into a three-dimensional network (Fig. 3).

Experimental

BaCO_{3} ($\left.0.397 \mathrm{~g}, 2 \mathrm{mmol}\right), \mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}(0.793 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{TeO}_{2}$ $(0.957 \mathrm{~g}, 6 \mathrm{mmol})$ and $13 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ were heated to 453 K in a $23-\mathrm{ml}$ capacity, teflon-lined steel bomb for 6 d . The bomb was cooled to room temperature over about 3 h and the resulting solids were recovered by vacuum filtration and rinsing with water. Pink clumps of β - $\mathrm{MnTe}_{2} \mathrm{O}_{5}$ crystals were present in the mix, which also included colourless chunks of TeO_{2} and other crystalline phases that are being investigated further. Cuboidal single crystals of $\beta-\mathrm{MnTe}_{2} \mathrm{O}_{5}$ were obtained by gently crushing the clumps between two glass slides.

Crystal data

[^0][^1]
Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.210, T_{\max }=0.225$
3493 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.045$
$S=1.20$
890 reflections
39 parameters

890 independent reflections
863 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=32.5^{\circ}$
$h=-11 \rightarrow 7$
$k=-16 \rightarrow 13$
$l=-9 \rightarrow 6$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.021 P)^{2}\right. \\
& +0.806 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.04 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.72 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0104 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	2.154 (2)	Te1-O2	1.8543 (19)
$\mathrm{Mn} 1-\mathrm{O}^{\text {ii }}$	2.166 (2)	Te1-O1	1.9895 (14)
$\mathrm{Mn} 1-\mathrm{O} 2$	2.2394 (19)	$\mathrm{Te} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.490 (2)
Te1-O3	1.8529 (19)		
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 2$	98.43 (9)	Te1-O2-Mn1	122.30 (10)
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 1$	93.79 (8)	$\mathrm{Te} 1-\mathrm{O} 2-\mathrm{Te} 1^{v}$	141.25 (10)
$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 1$	96.24 (9)	$\mathrm{Mn} 1-\mathrm{O} 2-\mathrm{Te} 1^{\text {v }}$	89.90 (6)
$\mathrm{O} 3-\mathrm{Te} 1-\mathrm{O} 2{ }^{\text {iii }}$	77.18 (8)	$\mathrm{Te} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {vi }}$	146.49 (11)
$\mathrm{O} 2-\mathrm{Te} 1-\mathrm{O} 2{ }^{\text {iii }}$	98.08 (4)	$\mathrm{Te} 1-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iii }}$	112.46 (10)
$\mathrm{O} 1-\mathrm{Te} 1-\mathrm{O} 2^{\text {iii }}$	164.04 (8)	$\mathrm{Mn} 1{ }^{\mathrm{vi}}-\mathrm{O} 3-\mathrm{Mn} 1^{\text {iii }}$	100.48 (8)
$\mathrm{Te} 1^{\text {iv }}-\mathrm{O} 1-\mathrm{Te} 1$	120.37 (14)		

The highest difference peak is $0.72 \AA$ from Te 1 and the deepest difference hole is $1.25 \AA$ from Te1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Brown, I. D. (1974). J. Solid State Chem. 11, 214-233.
Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Feger, C. R., Schimek, G. L. \& Kolis, J. W. (1999). J. Solid State Chem. 143, 246. Miletich, R. (1993). Mineral. Petrol. 48, 129-145.
Robinson, K., Gibbs, G. V. \& Ribbie, P. H. (1971). Science, 172, 567-570.
Shape Software (1999). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Trömel, M. (1975). Z. Anorg. Allg. Chem. 418, 141-144.
Walitzi, E. M. (1964). Naturwissenschaften, 51, 334-335.

[^0]: $\mathrm{MnTe}_{2} \mathrm{O}_{5}$
 $M_{r}=195.07$
 Orthorhombic, Pbcn
 $a=7.3114$ (4) \AA
 $b=10.9216$ (6) \AA
 $c=6.1711$ (3) \AA
 $V=492.78(5) \AA^{3}$
 $Z=4$
 $D_{x}=5.259 \mathrm{Mg} \mathrm{m}^{-3}$

[^1]: Mo $K \alpha$ radiation
 Cell parameters from 3337
 reflections
 $\theta=3.3-32.5^{\circ}$
 $\mu=14.21 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Cube, pink
 $0.16 \times 0.15 \times 0.15 \mathrm{~mm}$

