ISSN 1600-5368

Magnus G. Johnston and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{Mn-O}) = 0.002 \text{ Å}$ R factor = 0.019 wR factor = 0.045Data-to-parameter ratio = 22.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 5 June 2002

Online 14 June 2002

Accepted 10 June 2002

Manganese tellurite, β -MnTe₂O₅

Hydrothermally prepared β -MnTe₂O₅ is isostructural with MgTe₂O₅. It contains infinite layers of corner-sharing TeO₃₊₁ groups propagating in the *ac* plane. Infinite chains of edge-sharing MnO₆ octahedra [d_{av} (Mn–O) = 2.186 (2) Å] running along [001] link the Te/O layers into a continuous structure. Mn and one O atom have site symmetry 2. β -MnTe₂O₅ complements the known denningite-type phase α -MnTe₂O₅.

Comment

 β -MnTe₂O₅ is isostructural with MgTe₂O₅ (Trömel, 1975). An indexed powder pattern for MnTe₂O₅ (which we now call the β modification of this stoichiometry), with a similar orthorhombic cell to that found here, was also given by Trömel, but no further structural details were elucidated.

Synthetic denningite-type MnTe₂O₅ (hereafter called α -MnTe₂O₅) has a completely different structure (Miletich, 1993) containing unusual MnO₈ groups, as well as very distorted MnO₆ octahedra and TeO₄ moieties. The formula of the α phase is sometimes written as Mn₂(Te₂O₅)₂ to emphasise the different Mn coordinations and an extensive substitution chemistry is possible at both the eight- and six-coordinate metal sites (Walitzi, 1964; Miletich, 1993). β -MnTe₂O₅ is slightly denser than α -MnTe₂O₅ ($\rho = 5.198$ Mg m⁻³).

In β -MnTe₂O₅, the manganese cation (site symmetry 2) is coordinated by six O atoms in distorted octahedral geometry. The average Mn–O separation of 2.186 (2) Å is in good agreement with the ionic radius sum for high-spin Mn^{II} and O²⁻ (2.19 Å; Shannon, 1976). The bond valence sum (BVS) of 2.07, calculated by the Brown formalism (1996), is close to the

Figure 1

Fragment of β -MnTe₂O₅ (50% probability displacement ellipsoids), showing the atom connectivity and labelling scheme. The long Te1···O1^{vii} contact is indicated by a dashed bond. Symmetry codes as in Table 1; additionally, (vii) -x, 1-y, 1-z; (viii) $\frac{1}{2}-x$, $y-\frac{1}{2}$, z; (ix) -x, $y, \frac{1}{2}-z$.

 \bigcirc 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

Figure 2 Slice of β -MnTe₂O₅, viewed down [010], showing part of an infinite corner-sharing tellurite sheet.

Figure 3

Polyhedral diagram of β -MnTe₂O₅, viewed approximately normal to [001]. Colour key: MnO₆ octahedra pink and TeO₃₊₁ groups blue.

expected value of 2.00. The *trans* O-Mn-O bond angles range from 154.94 (7) to 174.38 (11)°, while the angular variance (Robinson *et al.*, 1971) of the *cis* O-Mn-O angles has the large value of 119.5°.

Te1 (BVS = 4.01, expected 4.00) has three O-atom neighbours with d(Te-O) < 2.00 Å and a further O atom some 2.49 Å distant. This so-called TeO₃₊₁ coordination approximates to a distorted folded square (or a trigonal bipyramid with one of the equatorial vertices absent and a long axial bond). A similar Te coordination environment has been seen in Co₂Te₃O₈ (Feger *et al.*, 1999). If a fifth, much longer, Te1···O1^{vii} [d = 3.069 (3) Å; symmetry code: (vii) -x, 1-y, 1-z] interaction in β -MnTe₂O₅ is also considered, the Te geometry approximates to a very distorted square-based pyramid. Such asymmetric coordinations are highly characteristic of Te^{IV} and can be correlated with its stereo-chemically active lone pair of electrons (Brown, 1974).

Of the three O atoms, O1 (site symmetry 2) bridges two Te atoms. O2 bonds to two Te and one Mn in very squashed pyramidal geometry [sum of X-O-X (X = Mn, Te) bond angles = 353.5°] and O3 bonds to two Mn and one Te in essentially planar geometry (sum of X-O-X bond angles = 359.4°).

The overall structure of β -MnTe₂O₅ consists of infinite corrugated sheets of corner-sharing TeO₃₊₁ moieties propagating in the (010) plane. Connectivity between adjacent

polyhedra is provided by the O1 and O2 species to result in an anionic layer of stoichiometry $[Te_2O_5]^{2-}$. These layers contain six-ring (six polyhedral units) loops (Fig. 2). Each MnO₆ group shares an edge *via* a pair of O3 species $[d(Mn \cdots Mn) = 3.3457 (3) \text{ Å}]$ with two others, thus forming infinite chains running in the [001] direction. These Mn octahedral chains serve to fuse the Te layers, *via* edge and corner-sharing, into a three-dimensional network (Fig. 3).

Experimental

BaCO₃ (0.397 g, 2 mmol), MnCl₂.4H₂O (0.793 g, 4 mmol), TeO₂ (0.957 g, 6 mmol) and 13 ml H₂O were heated to 453 K in a 23-ml capacity, teflon-lined steel bomb for 6 d. The bomb was cooled to room temperature over about 3 h and the resulting solids were recovered by vacuum filtration and rinsing with water. Pink clumps of β -MnTe₂O₅ crystals were present in the mix, which also included colourless chunks of TeO₂ and other crystalline phases that are being investigated further. Cuboidal single crystals of β -MnTe₂O₅ were obtained by gently crushing the clumps between two glass slides.

Crystal data

MnTe ₂ O ₅	Mo $K\alpha$ radiation
$M_r = 195.07$	Cell parameters from 3337
Orthorhombic, Pbcn	reflections
a = 7.3114 (4) Å	$\theta = 3.3 - 32.5^{\circ}$
b = 10.9216 (6) Å	$\mu = 14.21 \text{ mm}^{-1}$
c = 6.1711 (3) Å	T = 293 (2) K
$V = 492.78 (5) \text{ Å}^3$	Cube, pink
Z = 4	$0.16 \times 0.15 \times 0.15 \text{ mm}$
$D_{\rm r} = 5.259 {\rm Mg} {\rm m}^{-3}$	

Data collection

Bruker SMART1000 CCD	890 independent reflections
diffractometer	863 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -11 \rightarrow 7$
$T_{\min} = 0.210, \ T_{\max} = 0.225$	$k = -16 \rightarrow 13$
3493 measured reflections	$l = -9 \rightarrow 6$
Refinement	
rtejinentent	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	+ 0.806P]

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	+ 0.806P]
$wR(F^2) = 0.045$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.20	$(\Delta/\sigma)_{\rm max} < 0.001$
890 reflections	$\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$
39 parameters	$\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$
	Extinction correction: SHELXL97

Table 1

Selected geometric parameters (Å, °).

Mn1-O3 ⁱ	2.154 (2)	Te1-O2	1.8543 (19)
Mn1-O3 ⁱⁱ	2.166 (2)	Te1-O1	1.9895 (14)
Mn1-O2	2.2394 (19)	Te1-O2 ⁱⁱⁱ	2.490 (2)
Te1-O3	1.8529 (19)		
O3-Te1-O2	98.43 (9)	Te1-O2-Mn1	122.30 (10)
O3-Te1-O1	93.79 (8)	Te1-O2-Te1 ^v	141.25 (10)
O2-Te1-O1	96.24 (9)	Mn1-O2-Te1 ^v	89.90 (6)
O3-Te1-O2 ⁱⁱⁱ	77.18 (8)	Te1-O3-Mn1vi	146.49 (11)
O2-Te1-O2 ⁱⁱⁱ	98.08 (4)	Te1-O3-Mn1 ⁱⁱⁱ	112.46 (10)
O1-Te1-O2 ⁱⁱⁱ	164.04 (8)	Mn1vi-O3-Mn1iii	100.48 (8)
Te1 ^{iv} -O1-Te1	120.37 (14)		

Extinction coefficient: 0.0104 (4)

Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} + z$; (iv) - $x, y, \frac{1}{2} - z$; (v) $\frac{1}{2} - x, \frac{1}{2} - y, z - \frac{1}{2}$; (vi) $\frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z$.

The highest difference peak is 0.72 Å from Te1 and the deepest difference hole is 1.25 Å from Te1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Brown, I. D. (1974). J. Solid State Chem. 11, 214-233.

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.

Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Feger, C. R., Schimek, G. L. & Kolis, J. W. (1999). J. Solid State Chem. 143, 246.

Miletich, R. (1993). Mineral. Petrol. 48, 129-145. Robinson, K., Gibbs, G. V. & Ribbie, P. H. (1971). Science, 172, 567-570.

Shape Software (1999). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Trömel, M. (1975). Z. Anorg. Allg. Chem. 418, 141-144.

Walitzi, E. M. (1964). Naturwissenschaften, 51, 334-335.